
DOI 10.1140/epja/i2006-10081-1

Eur. Phys. J. A 29, 235–244 (2006) THE EUROPEAN

PHYSICAL JOURNAL A

Spectral patterns in the nonstrange-baryon spectrum
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Abstract. We extract, from a quark model potential that reproduces the number and ordering of nonstrange
baryonic resonances up to 2.3GeV, the quantum numbers for the dominant configurations in the ground
and first nonradial excited states. From the pattern of quantum numbers we identify, from data, spectral
regularities that allow us to predict the expected high-spin low-lying spectrum from 2.3 to 3.0GeV. N −∆
degeneracies and N parity doublets showing up can be interpreted in terms of a simple dynamics.

PACS. 12.39.Jh Nonrelativistic quark model – 14.20.-c Baryons (including antiparticles) – 14.20.Gk
Baryon resonances with S = 0

1 Introduction

There has been much interest during the last years in the
high-energy part of the hadronic spectrum. The aim is to
get a better understanding of the dynamics involved, in
particular the confinement mechanism in hadrons. On the
theoretical side some progress has been made. On the one
hand, unquenched lattice QCD points out a string break-
ing in the static potential between two quarks [1,2] what
should be properly incorporated in the phenomenological
description of the high-energy hadronic spectrum through
the coupling to open decay channels. On the other hand,
the idea of a parity multiplet classification scheme at high
excitation energies as due to chiral symmetry has been
suggested [3] and recently put in question [4]. On the ex-
perimental side, the lack of precise and complete data pre-
vents, at the current moment, to establish in a clear-cut
way a classification scheme for the highly excited hadron
spectrum. Hence, it may be appropriate to try to extract,
from a simple dynamical quark model calculation and its
comparison to data, some spectral patterns. To this pur-
pose we shall consider the light-baryon spectrum for which
an extensive collection of data including high-spin state
masses, though not very precise in some cases, exists.

We shall use a nonrelativistic quark potential model.
The application of such approach for high excited states
deserves some comments since the quarks inside the
baryons may be ultra-relativistic, qq pair creation out of
the vacuum becomes more and more relevant as the num-
ber of open decay channels increases, etc. As is well known
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these shortcomings, always implicit in the application of
the naive quark model, do not invalidate its usefulness
to provide information about the pattern of the quan-
tum numbers of the baryon states. To get an unambigu-
ous assignment of quantum numbers one should require
the model to generate, inasmuch as possible, the correct
number and ordering of the well-established experimental
states. Different dynamical models providing accurate de-
scriptions of the low-energy baryon spectrum have been
proposed [5]. Most of them rely on nonlimited (usually
linearly dependent on the interquark distance) confine-
ment interactions. As a consequence, above 1.9GeV, there
are many more predicted states than observed resonances.
This missing state problem can be solved by ascribing ex-
perimental resonances (in the πN partial-wave analysis)
to predicted states with a significant coupling to the πN
formation channel [6].

Alternatively, the missing state problem can be obvi-
ated by using a quark-quark screened potential as shown
in ref. [7], where a correct prediction of the number and
ordering of the known N and ∆ resonances, up to 2.3GeV
mass, is obtained. This points out to screening as an effec-
tive manner to give somewhat account of the coupling to
πN channels (lattice calculations have unveiled the close
relation between screening and the opening of decay chan-
nels). Such interpretation is supported by the fact that
the quantum numbers of the dominant configurations (for
the ground and first excited states of given J) coming
out from a screened potential (containing only confine-
ment and a residual one-gluon exchange (OGE) interac-
tion) are in perfect agreement with the ones ascribed to
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data from refined non-screened models through the cou-
pling analysis, as we have explicitly checked for J ≤ 7/2
(see ref. [6] for the identification of the available dominant
nonscreened configurations).

Though one cannot expect, from the minimal screened
dynamics employed, to get an accurate description of the
values of the baryon masses, it is clear its convenience to
provide an unambiguous assignment of quantum numbers
to baryon states beyond the sometimes ad hoc arguments
that have to be used in nonscreened models to identify the
experimental resonances when the πN coupling strengths
have similar values for different predicted candidates.

However, the smooth screening parametrization em-
ployed in ref. [7], suggested from old lattice data [8], does
not keep a direct relation to more recent lattice results [2]
pointing out a rather abrupt string breaking (rehadroniza-
tion) transition in the potential. Here, we deepen this rela-
tion. To this purpose the comparison with a sharply satu-
rated potential is useful. We analyze the resulting baryon
spectrum for both (smooth and sharp) models and com-
pare the resulting dominant configurations for any angu-
lar momentum. We generate patterns of quantum numbers
and associate to them spectral regularities observed in the
data. From them we are able to make purely phenomeno-
logical detailed predictions for resonances above 2.3GeV,
many of them not experimentally identified yet. From data
and our predictions we identify N−∆ degeneracies and N
parity series that have a dynamical understanding within
our quark model framework.

These contents are organized as follows. In sect. 2 we
introduce and discuss the models used and their results
for the nonstrange baryon spectra. The analysis of the
dominant contributions and the subsequent derivation of
spectral patterns is carried out in sect. 3. Finally, in sect. 4
we summarize our main findings.

2 The model

In the absence of sea quarks lattice QCD predicts the
static heavy-quark–heavy-antiquark (QQ) interacting po-
tential to rise linearly with the quark-antiquark dis-
tance [1]. Unquenched (valence + sea quarks) lattice calcu-
lations point out the existence of string breaking in QCD.
This is, the static QQ force becomes screened by interme-
diate light qq pairs, so that when the QQ distance exceeds
a critical value (the breaking distance) the QQ potential
saturates to a constant (saturation energy). In the 1980s
a smooth screened potential was proposed to parametrize
this effect [8]. In the last decade such a parametrization
has been implemented in valence quark models in an at-
tempt to examine the consequences of string breaking in
heavy quarkonia as well as in the nonstrange-baryon spec-
tra [7,9–12].

The simplest quark-quark screened potential, contain-
ing confinement and one-gluon exchange terms, reads (the
factor 1/2 has been explicitly written since it reflects the
difference between the quark-quark and quark-antiquark

interactions):

V (rij) =
1

2

[

σrij −
κ

rij
+

h̄2κσ
mimjc2

e−rij/r0

r0
2rij

(~σi · ~σj)

]

×
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µ rij

)

+
M0

3
, (1)

where rij is the interquark distance,mi,j the masses of the

constituent quarks, ~σi,j the spin Pauli operators, and M0

is a constant to fix the ground-state nucleon mass. The
screening multiplicative factor appears between parenthe-
sis on the right-hand side. µ, the screening parameter, is
the inverse of the saturation distance and its effective value
is fitted together with the other parameters, σ, κ, and κσ,
to the spectrum (µ−1 ' 1.4 fm for heavy quarkonia and
µ−1 ' 1 fm for nonstrange baryons) [7,12].

In the heavy-meson sector a good description of bot-
tomonium (the only truly nonrelativistic quarkonia) is ob-
tained. For nonstrange baryons the model predicts quite
approximately the number and ordering of the experimen-
tal states up to a mass of 2.3GeV. For the sake of com-
pleteness, we show improved results (with more channels
entering in the description) from ref. [7] in figs. 1 and 2.
Let us note that the ordering discrepancies, related to the
relative position of the first excited states of positive and
negative parity in N and ∆, are endemic in this kind of
quark model treatments; the number discrepancy related
to the presence of two, instead of one, excited states for
N(3/2+) and N(5/2+) might have to do with the presence

Fig. 1. Relative energy nucleon spectrum for the screened po-
tential of eq. (1) with the parameters of ref. [7]. The thick
solid lines represent our results. The shaded region, whose size
stands for the experimental uncertainty, represents the experi-
mental data for those states cataloged as (∗∗∗) or (∗∗∗∗) states
in the Particle Data Book [13]. Experimental data cataloged
as (∗) or (∗∗) states are shown by short thin solid lines with
stars over them and by vertical lines with arrows standing for
the experimental uncertainties. Finally, we show by a dashed
line the 1q ionization threshold and by a long thin solid line
the total threshold.
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Fig. 2. The same as fig. 1 for ∆ states.

of two degenerate excitations at the experimental level of
precision.

More recent lattice QCD calculations [2] show that the
QQ potential saturates sharply for a breaking distance
of the order of 1.25 fm corresponding to a saturation en-
ergy of about twice the B-meson (Qq) mass, indicating
that the formation of two heavy-light subsystems (B,B)
is energetically favored. This information has been im-
plemented in a quark model scheme [14] showing that,
as a consequence of coupled channels above the physical
thresholds (corresponding to the opening of decay chan-
nels), the description becomes progressively less accurate
high in the spectrum. Moreover, the mixing with the con-
tinuum can also modify the short-range part of the interac-
tion. Nonetheless, an effective (renormalized) nonscreened
potential continues being useful up to energies not too far
above the lowest physical threshold.

These results provide some understanding of the suc-
cessful application of the smooth screened potential of
eq. (1) in refs. [7] and [12]. For bottomonium, the maxi-
mum value of the potential, σ/µ = 2070MeV (the b mass
has been chosen so that the constant term in the potential
vanishes), translates into an upper limit for the energy of
bound states of 2mb+σ/µ = 11400MeV [12], far above the
lowest physical threshold, assuring that the potential does
not differ much from a nonscreened one (corresponding to
eq. (1) without the multiplicative screening factor) for the
experimentally known states. As a matter of fact, one can
alternatively use for bottomonium a (linear + Coulomb)
potential sharply saturated at an energy just above the
highest resonance experimentally known,

V (rij) =

{

σrij − κ/rij , rij < rsat ,

σrsat − κ/rsat , rij ≥ rsat ,
(2)

and maintain the quality of the description [15]. Let us
note that this is the closest approach one can do to a
nonscreened potential if one wants to extend its use high
in energy since the sharp saturation prevents a prolifera-
tion of predicted states without experimental counterpart.

Table 1. Quark model parameters.

mu = md (MeV) 337
r0 (fm) 0.495
rsat (fm) 2.12

κ (MeV fm) 10.0
κσ (MeV fm) 120.0
σ (MeV fm−1) 976.56
M0 (MeV) −1726.78

We should then keep in mind that the fitted saturation
distance, rsat, should not be identified with the lattice
breaking distance at the physical threshold but as an ef-
fective parameter to establish the limit of applicability of
the model (in fact its fitted value, 1.76 fm, differs a 30%
of the breaking value 1.25 fm).

In the nonstrange-baryon case, the maximum possible
value of the energy of bound states for the screened poten-
tial in ref. [7], 3mq +M0 + 3σ/(2µ) ' 2.4GeV, very close
to the highest experimental resonance catalogued as four
stars by the Particle Data Group (PDG) [13],∆(11/2+) at
2420MeV, reflects the difficulty of pushing the applicabil-
ity limit of the model beyond this energy. It is interesting
to make again a comparison with a sharply saturated po-
tential of the form:

V (rij) =

{

Vsr(rij) , rij < rsat ,

Vsr(rsat) , rij ≥ rsat ,
(3)

where
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1

2

[

σrij−
κ

rij
+

h̄2κσ
mimjc2

e−rij/r0

r2
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]

+
M0

3
,

(4)
whose parameters, given in table 1, are fitted to get
a global description of the nonstrange-baryon spectrum
while choosing rsat to keep the same value for the satu-
ration energy 3mq +M0 + 3σrsat/2 ' 2.4GeV (splitting
energy of the three pairs of quarks). We draw this sharp
potential and the smooth one in fig. 3. The calculation
of the spectrum proceeds exactly in the same manner as
in ref. [7], to which we refer for technical details. Let us
only remind for the moment that two different calcula-
tional methods, hyperspherical harmonic expansion (HH)
and Faddeev, are employed and that convergence of the
results is required. The resulting spectrum is shown in
figs. 4 and 5.

It is worth to remark that the presence, in the three-
body problem, of two-body thresholds (for only one quark
to be released, values quoted in table 2), apart from the
absolute three-body one (saturation energy), may repre-
sent further constraints in the applicability limit of the
model to any particular channel. As in ref. [7] we have
also included the predicted states close above the thresh-
olds.

The comparison of figs. 4 and 5 with figs. 1 and 2 shows
that the sharp potential tends quite generally to push up-
ward the highest-energy states. However, as we can check
there is little difference concerning the number and order-
ing of states. Both models give them quite reasonably. In
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Fig. 3. Effective interaction, 3V (rij)−EN , for the potentials
V (rij) of eq. (1), dashed line, and eq. (3), solid line, for a
two-particle spin-1 state. EN stands for the eigenvalue of the
nucleon ground state with the corresponding potential.

Fig. 4. The same as fig. 1 for the screened potential of eq. (3)
with the parameters of table 1.

other words, the screened potential is quite similar, con-
cerning these results, to the closest physical approach to
a nonscreened potential, represented by the sharp inter-
action, that takes effectively into account the effect of the
baryon decay to open channels in order to select the ob-
served resonances.

Let us notice further that the sharp-potential model
permits to establish in a direct way the subtle connection
between the lowest two-body (2bt) and three-body thresh-
olds (3bt): if the 3bt is increased (changing for example
rsat) and one refits the spin-spin and Coulomb terms to
recover the experimental ∆ − N mass difference, the 2bt
is increased, almost linearly, in correspondence. Otherwise
said, the 2bt (3bt) plus the ∆−N mass difference fixes the

Fig. 5. The same as fig. 4 for ∆ states.

Table 2. One-quark ionization thresholds. We give the energy
above the nucleon ground-state mass. ` is the orbital angular
momentum of a pair of quarks, s its relative spin and t its
isospin.

(`, s, t) E (MeV)
(0, 0, 0) 984.10
(0, 1, 1) 1143.33
(1, 0, 1) 1384.15
(1, 1, 0) 1416.48

3bt (2bt). This is a realization of the idea that the mixing
with the continuum (at least partially contained in the
effective thresholds) affects the whole (in particular the
short) range of the interaction. Moreover, as the lowest 2bt
corresponds to the lowest angular-momentum state, the
experimental presence of a well-established high-energy
low-angular momentum state can be used as a lower bound
to fix the lowest 2bt. Then this fixing procedure deter-
mines the maximum energy at which a higher angular-
momentum state can be predicted within the range of ap-
plicability of the model (a fine tune of this process has
been carried out to get the spectrum).

3 Spectral patterns

As shown in figs. 1, 2, 4 and 5, the predicted nonstrange-
baryon spectra are quite analogous despite the difference
between the two potentials. Furthermore, the dominant
configurations entering any JP ground state and its first
nonradial excitation are exactly the same for both poten-
tials (this is not the case for higher excitations as discussed
below) giving for them similar quantitative values that
differ at most a 13% from data (within the experimental
uncertainties). Hence it makes sense to proceed, from our
dynamical models, to a quantum number assignement for
these states. From the resulting patterns and from the ex-
perimental values of the masses of the known resonances
we shall make predictions for higher-energy states and we
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shall justify (as implied by our dynamical model) approx-
imate degeneracies and the partial appearance of approx-
imate parity doublets.

3.1 JP ground states

To express the spatial part of the dominant JP

ground-state configurations we shall use the hyper-
spherical harmonic notation, i.e., the quantum numbers
(K,L(`, λ), Symmetry). The so-called great orbital, K,
defines the parity of the state, P = (−)K , and its centrifu-

gal barrier energy, L(L+1)
2m〈ρ2〉 (L = K + 3

2 , ρ: hyperrradius).

` is the orbital angular momentum of a pair of quarks,
λ stands for the orbital angular momentum of the third
quark with respect to the center of mass of this pair and

L (~L = ~̀+ ~λ) is the total orbital angular momentum. Al-
ternatively, one can write the parity as P = (−)`+λ, since
K − ` − λ = even ≥ 0 is always satisfied. Symmetry
specifies the spatial symmetry ([3] : symmetric, [21] :
mixed, [111] : antisymmetric) which combines to the spin,
S, and isospin, T , symmetries (S, T = 3/2 : symmetric;
S, T = 1/2 : mixed) to have a symmetric wave function
(the color part is antisymmetric). More precisely, T = 1/2
for N and T = 3/2 for ∆, hence the spatial-spin wave
function must be mixed for N and symmetric for ∆.

It is convenient to group the ground states correspond-
ing to the same dominant configuration in our model as
done in tables 3 and 4 (note that above 2.4GeV the domi-
nant configurations correspond to an extrapolation of the
pattern).

As a first general rule we have

P = (−)L , (5)

for the dominant configuration in JP ground states. This
comes, except for ∆(1/2+), from (` = 0, λ) and/or (`, λ =
0) components for which L = `+ λ. For ∆(1/2+) one has
L = 0 with ` = 1 = λ instead of ` = 0 = λ due to the
more attractive spin-spin interaction.

The second general rule, of general validity for states
with J ≥ 5/2, can be formulated as follows:

J ≥ 5/2 : J = L+ S with L minimal . (6)

For states with lower total angular momentum such rule
is not always verified. In particular, it is not fulfilled by
theN(3/2+) andN,∆(1/2−). ForN(3/2+) the rule would
prescribe (L = 0, S = 3/2), hence spin symmetric and con-
sequently spatially mixed. Dynamically, a spatially sym-
metric (L = 2, S = 1/2) configuration, with a spin-spin
attractive contribution, is favoured. For N,∆(1/2−), ac-
cording to the parity expression, L = odd and eq. (6) can-
not be satisfied. In all these exceptional cases J = L− S,
with S minimal, provides the minimum energy. Otherwise
said, at the level of dominant configurations, the N(3/2+)
and the N(5/2+) are degenerate as well as the N,∆(1/2−)
and the N,∆(3/2−), respectively. These degeneracies are
quite well satisfied by data, see tables 3 and 4.

These two rules, complemented with the prescription
of having the minimum value of K (i.e., the minimum
centrifugal barrier) satisfying the symmetry requirements,
express the minimum-energy JP configuration coming out
from our dynamical model.

It is worth to mention that the same spectral patterns
and rules could be also derived from a careful look at
data in order to apply a general quark model multiplet
structure as done in ref. [16]. However, in this case the
lack of an underlying dynamics prevents, as pointed by
the author, a justification for the phenomenological rules
derived.

3.2 Positive-parity states

For positive-parity states the emerging picture consists of
two sets (spatially symmetric and mixed corresponding to
the upper and lower parts of table 3, respectively) of N ’s
and ∆’s grouped according to the same dominant con-
figurations. Each ∆ state, except for the ∆(1/2+), has a
nucleon correspondence. For ∆(1/2+) its natural nucleon
partner should be aN(3/2+) with (L = 0, S = 3/2) which,
as mentioned above, is dynamically unfavored. Actually,
our model predicts for N(3/2+) (L = 2, S = 1/2) a lower
mass than for ∆(1/2+) as it is the experimental case.

It is important to realize that the percentage of the
dominant configuration in the sets varies: while for the
upper part it can be quite different for N and ∆ part-
ners (for example, 62% of (2, 2, [3]) for N(5/2+) and 99%
for ∆(7/2+)), for the lower part it is quite approximately
the same and very close to 100% (for instance, 99% of
(2, 2, [21]) for ∆(5/2+) and 99% for N(7/2+)). This has
to do with the fact that for the lower-part series only a
spatially mixed wave function is allowed, whereas for the
upper-part N series there are, except for N(1/2+), two
possibilities open for the same (K,L) values: spatially
symmetric (spin-isospin symmetric) and spatially mixed
(spin-isospin mixed).

For the upper-part set, the lowest-lying states,
N(1/2+) and ∆(3/2+), with a dominant configuration
(0, 0, [3]), have an energy difference of 292MeV, entirely
due in our model to the spin-spin potential, attractive
for S = 1/2 and repulsive for S = 3/2, since for
both states the percentage of the dominant configura-
tion is almost the same (98% for N(1/2+) and 100%
for ∆(3/2+)). Let us keep in mind that chiral contri-
butions from meson exchanges are taken into account
through the effective quark-gluon coupling constant fitted
to the ∆(3/2+) − N(1/2+) mass difference. For the next
dominant configuration, containing the N(5/2+) and the
∆(7/2+), whose masses are quite well reproduced by our
model, one has to consider the configuration mixing ef-
fect in N(5/2+) (62% of (2, 2, [3]) and 34% of (2, 2, [21])).
Let us realize though that both configurations would give
the same energy for an hypercentral (only ρ-dependent)
potential. As our (confinement + Coulomb) potential is
quite close to an hypercentral one, the difference between
N and ∆ partners is again due in our model to the
spin-spin interaction. We predict 199MeV. This means
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Table 3. Positive-parity N and ∆ ground states for different dominant spatial-spin configurations up to ' 3GeV. The assign-
ment of dominant configurations above 2.4GeV corresponds to an educated guess. Experimental data are from PDG [13]. Stars
have been omitted for four-star resonances. States denoted by a question mark correspond to predicted resonances that do not
appear in the PDG (their predicted masses, also indicated by a question mark, appear in table 7).

(K,L, Symmetry) S = 1/2 Model (MeV) Exp. (MeV) S = 3/2

(0, 0, [3]) N(1/2+) 940 940

1232 1232 ∆(3/2+)

(2, 2, [3]) N(5/2+), N(3/2+) 1722 1680,1720

1921 1950 ∆(7/2+)

(4, 4, [3]) N(9/2+) 2378 2220

2175 2420 ∆(11/2+)

(6, 6, [3]) N(13/2+)(∗∗) 2700

2950 ∆(15/2+)(∗∗)

(2, 0, [21]) ∆(1/2+) 1849 1750

(2, 2, [21]) 1938 1990 N(7/2+)(∗∗)

∆(5/2+) 1871 1905

(4, 4, [21]) ? N(11/2+)(?)

∆(9/2+)(∗∗) 2193 2300

(6, 6, [21]) ? N(15/2+)(?)

∆(13/2+)(?) ?

Table 4. Negative-parity N and ∆ ground states for different dominant spatial-spin configurations up to ' 3GeV. The
assignment of dominant configurations above 2.4GeV correspond to an educated guess. Experimental data are from PDG [13].
Stars have been omitted for four-star resonances. States denoted by a question mark correspond to predicted resonances that
do not appear in the PDG (their predicted masses, also indicated by a question mark, appear in table 7).

(K,L, Symmetry) S = 1/2 Model (MeV) Exp. (MeV) S = 3/2

N(3/2−), N(1/2−) 1410 1520,1535

(1, 1, [21]) 1596 1675 N(5/2−)

∆(3/2−), ∆(1/2−) 1517 1700,1620

N(7/2−) 2275 2190

(3, 3, [21]) 2153 2250 N(9/2−)

∆(7/2−)(∗) 2153 2200

N(11/2−)(∗ ∗ ∗) 2600

(5, 5, [21]) ? N(13/2−)(?)

∆(11/2−)(?) ?

(3, 1, [3]) 2114 1930 ∆(5/2−)(∗ ∗ ∗)

(5, 3, [3]) 2153 2400 ∆(9/2−)(∗∗)

(7, 5, [3]) 2750 ∆(13/2−)(∗∗)

a slow variation of the spin-spin contribution when in-
creasing K and L for spatially symmetric states (ac-
tually the 62% of the ∆(3/2+) − N(1/2+) mass differ-
ence is 181MeV). The experimental ∆−N energy differ-
ence is bigger, ∆(7/2+) − N(5/2+) ' 270MeV, but also
seem to vary slowly: ∆(11/2+) − N(9/2+) ' 200MeV,
∆(15/2+) − N(13/2+) ' 250MeV. This may be reflect-
ing a larger probability for the spatially symmetric com-
ponent than given by our model (let us point in addi-
tion that the more cumbersome numerical procedure for
J ≥ 9/2 states due to the presence of thresholds, makes
less accurate our predictions, indeed the calculated en-

ergies for N(9/2+) and ∆(11/2+) are inverted with re-
spect to data). These quantitative differences should be
expected given the shortcomings of our dynamical model.
However, the spectral pattern derived is very useful to
make manifest a regularity in the data: the experimen-
tal N and ∆ energy steps when going from one dominant
configuration to the next one remain also constant about
500MeV: N(9/2+) − N(5/2+) ' 540MeV, ∆(11/2+) −
∆(7/2+) ' 470MeV, N(13/2+) − N(9/2+) ' 480MeV,
∆(15/2+) − ∆(11/2+) ' 530MeV (this energy step can
be associated, from our model, to ∆K = ∆L = 2). The
extension of this pattern to further steps allows us to pre-
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dict that a N(17/2+), if existing identifiable experimental
resonances at such high energies, would have a mass of
3200MeV.

Regarding the lower-part set we should notice that the
same configuration percentage for N ’s and ∆’s would im-
ply a degeneracy, term by term, if only spatial (neither
spin- nor isospin-dependent) interactions were considered,
N(7/2+) : ∆(5/2+); N(11/2+) : ∆(9/2+), . . . . As a mat-
ter of fact, as for this set the spin-spin interaction (the
only nonspatial one in our model) gives little contribu-
tion, due to its short-range character and the spatial mixed
symmetry involved (with K = L ≥ 2), the difference be-
tween the N(7/2+) and ∆(5/2+) masses (the only states
clearly below threshold) is in our model less than 5%, what
seems to be corroborated by data (this could be an indica-
tion that isospin-dependent interactions do not contribute
significantly as well). Concerning the energy step, we ex-
pect from our analysis above (∆K = ∆L = 2) and the
scarce data (∆(9/2+)−∆(5/2+) ' 400MeV) an approxi-
mate constant value around 400–500MeV. From this there
would appear a N(11/2+) at about 2450MeV (the energy
of its two stars ∆(9/2+) partner is experimentally in the
interval 2200–2500MeV), a ∆(13/2+) and a N(15/2+) at
about 2900MeV and a ∆(17/2+) around 3300MeV.

All predictions of our model up to 3GeV, from this
subsection and next subsections (3.3 and 3.5), are summed
up in table 7.

3.3 Negative-parity states

For negative-parity states the results are organized in
table 4. The upper part corresponds to spatially mixed
configurations for which we expect, from our model, a
rapid decrement in the spin-spin energy difference be-
tween N and ∆ partners when going from K = L = 1
to K = L ≥ 3 and, as a consequence, all the states with
the same dominant configuration should become close in
mass. The data seem to follow this prescription: mass dif-
ferences of 180MeV at most for K = L = 1, 60MeV for
K = L = 3, . . . . Again the spectral pattern makes mani-
fest the energy step (400–500MeV) regularity in the data:
(N(9/2−)−N(5/2−) = 575MeV; ∆(7/2−)−∆(3/2−) =
500MeV, N(11/2−) − N(7/2−) = 410MeV) as it cor-
responds to ∆K = ∆L = 2. Therefore, one would ex-
pect a N(13/2−) and a ∆(11/2−) at about 2650MeV
and a N(15/2−), a ∆(15/2−) and a N(17/2−) at about
3050MeV.

The lower part of table 4 contains an independent se-
ries of ∆’s without N ’s partners. All states are above their
lowest threshold. From the analysis above we can expect
again a step energy, corresponding to ∆K = ∆L = 2, of
around 400–500MeV that turns out to be compatible with
data within the experimental errors. From this a∆(17/2−)
would be located at approximately 3200MeV.

3.4 N−∆ approximate degeneracies

According to our model, the masses of the N(J−) and
∆(J−) in the left-hand side of table 4 should become

Table 5. N and ∆ approximate degeneracies up to ' 3GeV.
Experimental masses (in MeV) from PDG [13]. Predicted
masses are signaled by a question mark.

N ∆

N(7/2−)(2190) : ∆(7/2−)(2200)

N(11/2−)(2600) : ∆(11/2−)(2650?)

N(7/2+)(1990) : ∆(7/2+)(1950)

N(11/2+)(2450?) : ∆(11/2+)(2420)

N(15/2+)(2900?) : ∆(15/2+)(2950)

degenerate as the effective spin-spin interaction becomes
weaker and the potential approaches an hypercentral one.
This seems also to be the experimental situation.

On the other hand, the N(J+) and ∆(J+) on the
right-hand side of table 3 should become degenerate as the
spin-spin contribution for S = 3/2 (significantly smaller
than for S = 1/2 in spatially symmetric states) is not
quantitatively much different for spatially symmetric and
mixed states. This is confirmed by the scarce data avail-
able (JP = 7/2+).

These results, from data and our predictions, are
picked up in table 5. We can express its content in a
schematic simplified manner through:

N(J+,−) ' ∆(J+,−) for J =
4n+ 3

2
with n = 1, 2, 3, . . . . (7)

Let us realize that for positive-parity eq. (7) corresponds
to a rule derived in ref. [16] from a phenomenological mass
formula obtained from the assumption of linear Regge tra-
jectories.

3.5 Excited states

For excited states in general the situation is much more
cumbersome. Though both models, smooth and sharp,
provide a similar pattern a more careful analysis of the
configurations entering the states makes clear significant
differences. For instance, the fourth N(1/2+) state has for
the smooth potential a (2, 2, [21]), S = 3/2 component de-
generate (at the level of precision of the model) with the
(2, 1, [111]), S = 1/2, while the same state corresponds
uniquely to the last configuration for the sharp potential.
For ∆(3/2+) in the sharp case, the radial excitation of
(0, 0, [3]), S = 3/2 and the (2, 2, [21]), S = 1/2 configu-
rations are degenerate, whereas in the smooth case, the
radial excitation of (0, 0, [3]), S = 3/2 is the first excited
state and it is not degenerate, etc. Moreover, the first ra-
dial excitations of ∆(3/2+) at 1600MeV and N(1/2+) at
1440MeV are badly predicted. In contrast to this inade-
quacy to deal with the radial excitations and the strong
model dependence of the configurations for higher (second
and up) excitations, our dynamics provides a very simple
picture for the first non-radial excitations that follows the
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Table 6. Ground and first nonradial excitation (denoted by a black dot) correspondence according to our model up to ' 3GeV.
Experimental masses (in MeV) from PDG [13]. Experimental unknown masses are signaled by a question mark.

N ∆

∆(3/2+)•(1920) : ∆(5/2+)(1905)

N(5/2+)•(2000) : N(7/2+)(1990) ∆(5/2+)•(2000) : ∆(7/2+)(1950)

N(7/2+)•(?) : N(9/2+)(2220) ∆(7/2+)•(2390) : ∆(9/2+)(2300)

N(9/2+)•(?) : N(11/2+)(?) ∆(9/2+)•(?) : ∆(11/2+)(2420)

N(11/2+)•(?) : N(13/2+)(2700) ∆(11/2+)•(?) : ∆(13/2+)(?)

N(13/2+)•(?) : N(15/2+)(?) ∆(13/2+)•(?) : ∆(15/2+)(2950)

N(3/2−)•(1700) : N(5/2−)(1675)

N(5/2−)•(2200) : N(7/2−)(2190) ∆(5/2−)•(2350) : ∆(7/2−)(2200)

N(7/2−)•(?) : N(9/2−)(2250) ∆(7/2−)•(?) : ∆(9/2−)(2400)

N(9/2−)•(?) : N(11/2−)(2600) ∆(9/2−)•(?) : ∆(11/2−)(?)

N(11/2−)•(?) : N(13/2−)(?) ∆(11/2−)•(?) : ∆(13/2−)(2750)

Table 7. N and ∆ predicted states in the interval [2.2, 3.0]MeV. We denote by a black dot the first nonradial excitation.

N ∆

J = 7/2 N(7/2+)•(2220) N(7/2−)•(2250) ∆(7/2−)•(2400)

J = 9/2 N(9/2+)•(2450) N(9/2−)•(2600) ∆(9/2+)•(2420) ∆(9/2−)•(2650)

J = 11/2 N(11/2+)(2450) ∆(11/2−)(2650)

N(11/2+)•(2700) N(11/2−)•(2650) ∆(11/2+)•(2900) ∆(11/2−)•(2750)

J = 13/2 N(13/2−)(2650) ∆(13/2+)(2900)

N(13/2+)•(2900) ∆(13/2+)•(2950)

J = 15/2 N(15/2+)(2900)

trend of data. The rule, coming from the absence of spin-
orbit and tensor forces in our model, and again of general
validity for J ≥ 5/2, is:

The first non-radial excitation of N,∆(J) and the
ground state of N,∆(J + 1) respectively, are almost de-
generate. (8)

This rule is satisfied by existing data at the level of 3%,
table 6. From now on we will denote by a black dot the
first nonradial excitation of any state. The only signifi-
cant deviation from the previous rule, ∆(5/2−)•(2350) :
∆(7/2−)(2200) (7% of difference), corresponds to two res-
onances catalogued as one star by the PDG. Indeed, the
degeneracy can be accomplished within the experimental
uncertainties, see fig. 5.

Assuming this approximate degeneracy we can guess,
from data and from our phenomenological ground-state
predictions above, the masses for the first nonradial ex-
cited states with a question mark in table 6. These pre-
dictions, up to ' 3GeV, are summed up in table 7.

For J < 5/2 the rule is only satisfied, according
to our model, by N(3/2−) and ∆(3/2+). For some of
the remaining states our model gives also definite rela-
tions between their first nonradial excitations and other
ground or excited states. These relations are quite rea-
sonably satisfied by the data too: N(1/2−)•(1650) :
N(3/2−)•(1700) : N(5/2−)(1675), ∆(1/2−)•(1900) :

∆(3/2−)•(1940), ∆(1/2+)•(1910) : ∆(5/2+)•(2000) :
∆(7/2+)(1950).

It is worth to remark that some of our findings in ta-
ble 7 might be in fact already accomplished by current
data although being masked by the experimental uncer-
tainties (see figs. 4 and 5). For example, the N(7/2+,−)•

could be, within theoretical plus experimental errors, in
the N(7/2+,−), the ∆(7/2−)• in the ∆(7/2−) and so on.
We should also realize that some of the predicted reso-
nances could have small couplings to formation channels,
what would make difficult its detection (see, for example,
ref. [6] regarding N(11/2+), N(13/2−) and N(15/2+)).

3.6 Parity series

A look at tables 3, 4 and 7 shows some approximate
N(JP ) parity doublets. Thus, for J ≥ 5/2 the N+

ground-state series in the upper part of table 3 and
the N− ground-state series in the upper part of table 4
appear almost degenerate, term by term, for example
N(5/2+)(1680) : N(5/2−)(1675), as shown on the left-
hand side of table 8. From our model we can propose
a qualitative systematic for this doubling: the bigger re-
pulsion in the positive-parity state with respect to the
negative-parity one, due to ∆K = 1,∆L = 1, is compen-
sated by the bigger attraction in a spatially symmetric
S = 1/2 configuration (i.e., ∆S = −1). We can quantify
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Table 8. Dynamical parity doublets from our analysis up to ' 3GeV. Experimental masses (in MeV) from PDG [13]. Predicted
masses are signaled by a question mark. The black dot indicates the first nonradial excitation.

N

Ground states First nonradial excitation

N(5/2+)(1680) : N(5/2−)(1675)

N(7/2+)•(2220?) : N(7/2−)•(2250?)

N(9/2+)(2220) : N(9/2−)(2250)

N(11/2+)•(2700?) : N(11/2−)•(2650?)

N(13/2+)(2700) : N(13/2−)(2650?)

these effects from our data analysis above. We can esti-
mate an increment of the repulsion energy of ' 250MeV
(from ' 500MeV for ∆K = 2, ∆L = 2, as previously
discussed) and an increment in the attraction, when go-
ing from S = 3/2 to S = 1/2 of approximately the
same amount. So we can predict further parity doublings,
N(13/2+) : N(13/2−), . . . . Moreover, the application
of our preceding rules for the first non-radial excitations
gives rise to an equivalent approximate parity doublet se-
ries, right-hand side of table 8.

For ∆’s (J ≥ 5/2) although an inspection to data in
tables 3 and 4 might also suggest some approximate degen-
eracies: the ∆(J+,−) ground-state series in the lower parts
of table 3 and table 4 could be almost degenerate, term by
term: ∆(5/2+)(1905) : ∆(5/2−)(1930), ∆(9/2+)(2300) :
∆(9/2−)(2400), . . . , we expect our model not to support
this suggestion. Indeed going from the positive to the cor-
responding negative-parity state we expect the centrifugal
repulsion getting increased (∆K = 1) and the spin-spin
interaction changing from attractive (S = 1/2) to repul-
sive (S = 3/2), hence the J− states should be higher in
mass than the J+ ones.

We should realize that the approximate N parity dou-
blets appear discretely, every 500MeV. This does not pre-
clude the existence for other energies of additional (N
and/or∆) parity doublets involving higher excitations but
we cannot carry out for them a trustable analysis.

4 Summary

We have performed a phenomenological analysis of the
nonstrange-baryon spectrum between 2.3 and 3GeV. Our
starting point is a quark model potential, containing con-
finement and OGE interactions saturating at 2.4GeV,
that gives the correct number and ordering of known res-
onances up to 2.3GeV. The study of the dominant con-
figurations entering the ground state and the first nonra-
dial excitations provides us with quantum number spectral
patterns. The extrapolation of these patterns to higher en-
ergies allows the prediction, from existing data, of ground
(J ≥ 11/2) and first nonradial excited (J ≥ 7/2) state
masses in the quite experimentally uncertain energy re-
gion from 2.3 to 3GeV. It is precisely this uncertainty,
reflecting the transition to the continuum, what makes
our picture plausible despite the blown up number of new
states.

The qualitative adequacy of our model descrip-
tion to data suggests that the effective (confine-
ment+Coulomb+ spin-spin) dynamics employed (we
have estimated numerically small contributions of conven-
tional meson exchange potentials to the mass of J ≥ 5/2
baryons) contains the essential ingredients to give account
of the observed regularities in the spectrum. In this re-
spect, we should emphasize i) the usefulness of screen-
ing as an effective mechanism in quark potential models
to provide an unambiguous assignment of quantum num-
bers to states (this is related to the connection of screen-
ing to decay channel effects as shown by lattice calcula-
tions) and ii) the importance of using the hyperspheri-
cal harmonic basis as the more convenient to deal, from
the point of view of the physical interpretation, with the
quasi-hypercentral potential considered.

From data and our predictions we find, on the one
hand, approximate N −∆ degeneracies and, on the other
hand, series of N parity doublets involving ground or first
nonradial excitations exclusively. We get from our minimal
dynamics some understanding about how these degenera-
cies come out.

We should finally remark that our results do not rely
on any symmetry assumption in QCD, but on a particular
dynamics that provides a spectral pattern in agreement
to data. Since existing data beyond 1.9GeV are plagued
with large experimental errors, we cannot pretend our
quantitative predictions to be very precise. Nonetheless,
we think our findings can be of help for the always needed
experimental spectral searches in this region as well as for
the theoretical progress in the dynamical interpretation
of data.
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y Tecnoloǵıa under Contract No. FPA2004-05616, by Junta de
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